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The Integrable Optics Test Accelerator (IOTA), currently under commissioning at Fer-

milab, is a novel storage ring designed in part to investigate the dynamics of beams with
large transverse tune spread in the presence of a strongly nonlinear integrable lattice.1,2

One motivation for this design is the strong dependence of the particle tunes on am-

plitude, which leads to a decoherence of transverse oscillation modes that may help to
suppress the development of coherent space charge instabilities in an intense beam. We

describe the implementation of new numerical tools in the code IMPACT-Z to facili-

tate robust modeling of nonlinear integrable optics with space charge in IOTA. Tracking
within the unique 1.8 m magnetic insert is performed using a new representation of

the nonlinear integrable potential in the complex plane, together with a second-order
symplectic integrator based on Yoshida splitting. Space charge is treated using either a

traditional quasistatic grid-based Poisson solve (with one of several possible boundary

conditions) or using a new spectral solver that is symplectic (by design) on the N -particle
phase space of the macroparticle system. Numerical applications to IOTA modeling are

described.
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1. Introduction

The Integrable Optics Test Accelerator (IOTA), currently under construction at

Fermilab, is a novel storage ring designed in part to investigate the dynamics of

beams with large transverse tune spread in the presence of a strongly nonlinear

integrable lattice.1 The lattice design2,3 makes use of a 1.8 m-long nonlinear mag-

netic insert with an s-dependent transverse magnetic field that is shaped to generate

bounded, regular (integrable) motion in the transverse plane for on-momentum par-

ticles. A primary goal of IOTA is to demonstrate that nonlinear tune shifts exceed-

ing 0.25 can be achieved without significant degradation of the dynamic aperture.2

The strong dependence of particle tunes on amplitude leads to a decoherence of

transverse oscillation modes that may help to suppress the particle-core resonances

primarily responsible for beam halo development in intense beams,4 suggesting a

possible strategy for the mitigation of particle losses in facilities operating near the

Intensity Frontier.

Several challenges are associated with modeling accurately the beam dynam-

ics in IOTA, including the strong intrinsic nonlinearity of the system, the complex

structure of the fields within the nonlinear magnetic insert, the need for robust
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long-term tracking with space charge over ∼10K turns or more (for investigation of

beam stability and low-level particle losses), the absence of a detailed theoretical

understanding of the interplay between space charge and nonlinear integrability, and

the sensitivity of the integrability of the system to a variety of perturbative effects.

A primary goal of this study was to implement tools within the code IMPACT-Z

for modeling nonlinear integrable optics (with space charge) in IOTA while avoid-

ing sources of non-symplectic numerical artifacts, preserving as far as possible the

structure of the ring as an integrable or near-integrable Hamiltonian system.

The following section describes the structure of the nonlinear magnetic insert

field and potentials, and their relationship to the integrability of motion. Section 3

describes the symplectic integration algorithm used for tracking within the nonlinear

magnetic insert. Section 4 describes the algorithm used for symplectic multiparti-

cle tracking with space charge. Section 5 describes two applications to numerical

modeling of beam dynamics in IOTA. We conclude with a brief summary.

2. Analytical Treatment of the Nonlinear Integrable Potential

We summarize the structure of the nonlinear magnetic insert in the ideal limit1

that the magnetic field is transverse and slowly varying with longitudinal position,

∂sBx, ∂sBy ≈ 0. Detailed theoretical treatments are provided elsewhere,1,5 as is a

description of the physical magnet design.6

The 2D magnetic field within the nonlinear insert is given by ~B = ∇ × ~A =

−∇ψ, where the magnetic vector potential ~A and the magnetic scalar potential ψ

at a longitudinal position s are most easily expressed in terms of the dimensionless

quantities:

F =
As + iψ

Bρ
, ζ =

x+ iy

c
√
β(s)

, t̃ =
τc2

β(s)
, (1)

using the complex function:5

F (ζ) =

(
t̃ζ√

1− ζ2

)
arcsin(ζ).

Here β = βx = βy is the betatron amplitude across the drift space that will contain

the magnet, Bρ is the magnetic rigidity, τ is a dimensionless parameter character-

izing the strength of the magnet, and c 6= 0 [m1/2] characterizes the length scale of

the potentials in the transverse plane. Fig. 1 illustrates the function F , together

with the associated magnetic field lines.

Since ~A⊥ = 0 in this model, the single-particle Hamiltonian within the nonlinear

magnetic insert takes the following form, taking the longitudinal coordinate s as the

independent variable:

H(X,Px, Y, Py, T, Pt; s) = −
√

1− 2Pt

β0
+ P 2

t − P 2
x − P 2

y −
As

Bρ
− Pt

β0
, (2)
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Fig. 1. Domain of analyticity of the complex function F , which defines the vector potential of
the nonlinear insert in the transverse plane. The curves in blue denote magnetic field lines. The

dashed circle denotes the circle of convergence of the multipole series. Singularities occur at the

points ζ = ±1.

where Px = px/p
0 and Py = py/p

0 are momenta normalized by the total de-

sign momentum p0, β0 is the relativistic beta of the reference particle, and

Pt = −∆γ/(β0γ0).

In the paraxial approximation Px, Py << 1, it follows that the Hamiltonian for

an on-energy particle (Pt = 0) within the nonlinear magnetic insert takes the form:

H⊥(X,Px, Y, Py; s) =
1

2
(P 2

x + P 2
y )−ReF (ζ), ζ =

X + iY

c
√
β(s)

. (3)

To see how (3) yields integrable motion, we perform an s-dependent transformation1

to new phase space variables given by:

(
XN

PxN

)
=

(
1/c
√
β 0

α/c
√
β
√
β/c

)(
X

Px

)
,

(
YN
PyN

)
=

(
1/c
√
β 0

α/c
√
β
√
β/c

)(
Y

Py

)
. (4)

Here α(s) = −β′(s)/2, and the factors of c are included so that the normalized

variables (XN , PxN , YN , PyN ) are dimensionless. Taking as the independent variable

the betatron phase advance Ψ (defined by Ψ′ = 1/β) within the drift containing the

magnetic insert, the Hamiltonian corresponding to (3) in these normalized variables

takes the dimensionless form:

HN (XN , PxN , YN , PyN ; Ψ) =
1

2
(P 2

xN + P 2
yN +X2

N + Y 2
N )− τU (XN , YN ) , (5)

where

U = Re
(

ζ√
1− ζ2

arcsin(ζ)

)
, ζ = XN + iYN . (6)
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Since HN does not depend explicitly on the independent variable Ψ, HN is an

invariant of motion. The functional form of U is carefully chosen to yield a second

invariant of motion, given by:

IN = (XNPyN−YNPxN )2+P 2
xN+X2

N−τW (XN , YN ), W = Re
(

ζ + ζ∗√
1− ζ2

arcsin(ζ)

)
.

Here the star ∗ denotes complex conjugation. It is not difficult to verify that

{HN , IN} = 0, and that HN and IN are functionally independent, so it follows

that (5) describes a completely integrable Hamiltonian system in the sense of Liou-

ville.

In IOTA, the transfer map R for the remainder of the ring (from the exit of

the nonlinear insert to its entrance), which we call the arc, is nearly linear with a

net phase advance of nπ for some integer n. The map R is therefore described in

normalized coordinates (4) by the matrix ±I, where I is the 4×4 identity. It follows

that HN and IN are each invariant under R, and therefore under the one-turn map

for the ring, so that the complete ring is described by an integrable symplectic

one-turn map. Note, however, that integrability is ensured only when particles are

on-energy in the paraxial approximation Px, Py << 1.

3. Symplectic Integrator and Implementation in IMPACT-Z

A new element type was added to the code IMPACT-Z to model the nonlinear

magnetic insert described in the previous section. This element accepts as input

the following 6 control parameters: L (insert length [m]), nSC (number of “space

charge steps” across the insert), nMap (number of “map steps” per space charge

step), τ (insert strength), c (scale parameter [m1/2]), µ0 (tune advance across the

insert). An additional flag allows the user to select between tracking using the

Hamiltonian (2) or using an approximate Hamiltonian obtained by expanding H

through quadratic terms in the momenta.

Within this element, tracking with space charge is performed using a second-

order symplectic integrator.7–9 A two-level splitting of the Hamiltonian is used,

where at each level we express the map over a longitudinal step of length h as:

H = H1 +H2, M(h) =M1

(
h

2

)
M2(h)M1

(
h

2

)
+O(h3), (7)

where Mj is the symplectic map associated with the Hamiltonian Hj (j = 1, 2).

Since H is in general non-autonomous, we must apply the following modification

of (7), obtained by applying (7) to the corresponding map on the extended phase

space:

M(s→ s+ h) =M1

(
s→ s+

h

2

)
M2

(
h, s+

h

2

)
M1

(
s+

h

2
→ s+ h

)
+O(h3).

Numerical evaluation is performed from left to right, where the mapM2 appearing

on the right-hand side is interpreted as the map generated by the Hamiltonian H2
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when the explicit appearance of the longitudinal coordinate is replaced by a fixed

parameter equal to s+ h/2.

The upper-level splitting, performed once per “space charge step,” takes the

form:9

H = Hext +HSC , (8)

where Hext is the Hamiltonian (2), and HSC is an additional contribution due to

space charge. The map MSC is computed using techniques to be described in the

following section.

Each “space charge step” is subdivided into nMap “map steps”, for which we

apply the lower-level splitting:

Hext = Hdrift +HNLL, (9)

where:

Hdrift = −
√

1− 2Pt

β0
+ P 2

t − P 2
x − P 2

y −
Pt

β0
or Hdrift =

1

2
(P 2

x + P 2
y ) +

P 2
t

2β2
0γ

2
0

,

and

HNLL = −ReF (ζ), ζ =
X + iY

c
√
β(s)

. (10)

The maps Mdrift and MNLL are exactly known. In particular, if we define the

quantities:

P = Px + iPy, σ =
h

c
√
β(s)

, (11)

the map MNLL(h, s) affects only the momenta, taking P → Pf where:

Pf = P + σ

(
dF (ζ)

dζ

)∗
. (12)

Here the star denotes complex conjugation, and the derivative in (12) is exactly

known. The map (12) is evaluated numerically using complex arithmetic.

Fig. 2 illustrates the scaling of numerical error with stepsize h obtained by

tracking a single initial condition from the entrance of the nonlinear insert to its

exit (a distance L). In each case, the quantities HN and IN are computed at the exit

of the nonlinear insert and compared against the well-converged results obtained as

h → 0. The blue lines indicate the expected quadratic scaling of the global error.

This second-order algorithm can easily be extended to fourth order (or higher) using

the techniques of Yoshida.8
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Advances in Symplectic Tracking for Robust Modeling of Nonlinear Integrable Optics

New numerical tools to improve modeling of nonlinear 
integrable optics in IOTA with intense space charge have been 
implemented in the code IMPACT-Z.  A complex treatment of 
the nonlinear insert is used as an alternative to [1] for tracking, 
avoiding a previously problematic instability.  This is performed 
using a second-order symplectic integrator based on Yoshida 
splitting.  Space charge can be treated using either a traditional 
grid-based Poisson solve or using a new spectral solver that is 
symplectic (by design) on the N-particle phase space of the 
macroparticle system [8].  Ongoing work will investigate how 
diffusion rates for the invariants of motion in IOTA are affected 
by choice of numerical parameters (number of macroparticles, 
number of grid cells or spectral modes, number of steps), and 
the use of additional Poisson solvers is under consideration.  
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Nonlinear Integrable Optics 
in IOTA (FNAL)

Goals:  Proof of principle demonstration of nonlinear integrable 
beam optics [1-3]--to achieve nonlinear tune shifts exceeding 0.25 
without degradation of dynamic aperture and to exploit the resulting 
nonlinear decoherence to suppress collective instabilities (halo) [4].  

Inside the nonlinear insert, tracking with space charge is 
performed using a second-order symplectic integrator 
(easily generalized to higher order) [7].  Twice apply the 
following splitting for a step of size h: 

Here K is the generalized perveance of the beam and a, b are 
the aperture size in x and y, respectively. 

Following [8], a particle-based 2D symplectic space charge 
solver with rectangular boundary conditions was implemented 
in IMPACT-Z.  The collective Hamiltonian for the N-particle 
system is given explicitly by: 

•  Dynamics inside the nonlinear magnetic insert: 

•  βx = βy , D = 0 across the nonlinear drift space 
•  nπ phase advance from nonlinear drift space 
       exit to nonlinear drift space entrance  
 

drift space for  
nonlinear insert 

Courant-Snyder transformation, scaling 

H? =
1

2
(P 2

x + P 2
y ) � ⌧c2

�(s)
U

 
X

c
p
�(s)

,
Y

c
p
�(s)

!

HN =
1

2
(P 2

xN + P 2
yN + X2

N + Y 2
N ) � ⌧U(XN , YN )

•  Dynamics in the arc external to the insert: 

{HN , IN} = 0

HN, IN are invariant under the one-turn map for the ring. 

. 

first invariant 

Complex Representation of the 
Nonlinear Integrable Potential

•  Nonlinearity: tune spread washes out  
      coherent space charge instabilities 
 
•  Integrability: ensures orbits are regular  
      and remain bounded (avoids chaos)  

S.Nagaitsev, IOTA Program 26 

Integrable Optics at IOTA 
• Main goals for studies with a pencil electron beam:  

� Demonstrate a large tune spread of ~1 (with 4 lenses) without degradation of 
dynamic aperture ( minimum 0.25 ) 

� Quantify effects of a non-ideal lens and develop a practical lens (m- or e-lens) 

FNAL Concept: 2-m long 
nonlinear magnet 

SBIR Phase I and II:  
Radiabeam Technologies 

FMA, fractional tunes

Small amplitudes
(0.91, 0.59)

Large amplitudes

0.5 1.0

0.5

1.0

νx

νy

A single 2-m long nonlinear lens  
creates a tune spread of ~0.25 NA-PAC13: F. Shea et al., 

“Measurement of Nonlinear 
Insert Magnets” 

The vector potential is chosen to give a 2 d.o.f. Hamiltonian 
for on-energy particles within the insert of the form: 

D&N give in [1] a realizable potential U such that HN 
admits a second invariant IN :                          . 

Assumed linear with a map RN given by:  
corresponding to a thin axially-symmetric lens 
generating a phase advance nπ, for integer n.  

RN = ±I

Integrability + Maxwell’s equations require that the 2D 
magnetic vector potential       within the insert satisfies: 

Tests of a 2D Symplectic 
Spectral Space Charge Solver

(@2
x + @2

y)As = 0

xy(@2
x � @2

y)As + (y2 � x2 + 1)@x@yAs + 3y@xAs � 3x@yAs = 0

Modeling need:  Algorithms for robust and efficient  
symplectic long-term tracking with intense, high-resolution  
space charge in strongly nonlinear s-dependent B fields.  

(z2 � 1)
d2F

dz2
+ 3z

dF

dz
+ 2t̃ = 0

F (z) =

✓
t̃zp

1 � z2

◆
arcsin(z)

Application to the IOTA lattice

z = x + iy F = As + i 

Complex representation as a single ODE [5]: 

2D Laplace Eq. 

As

Bertrand-Darboux Eq. 

Solution: 

Symplectic Integrator & 
Implementation in IMPACT-Z

Domain of analyticity of the complex function F , which defines 
the vector potential of the nonlinear insert in the transverse plane.  
Curves in blue denote magnetic field lines.  The fields vary with 
longitudinal position s due to the dependence on β, which is the 
betatron amplitude across the drift space containing the insert. 

H = H1 + H2 M(h) = M1

✓
h

2

◆
M2(h)M1

✓
h

2

◆
+ O(h3)

Upper-level splitting (once per “space charge” step) 

Lower-level splitting (once per “map” substep) 

Hext = Hdrift + HNLL

H = Hext + HSC

(contribution due to nonlinear insert fields) 

(contribution due to space charge fields) 

p⇤ = �
dF

dz
p =

�px + i�py

p0

The map           is a momentum kick in the space charge 
charge fields computed via a Poisson solve, while   
is a momentum kick in the nonlinear insert fields using: 

MSC

MNLL

� =
h

c
p
�

Convergence of the two invariants of motion with step size h 

⇠ O(h2)

⇠ O(h2)

global error 

global error 

lo
g
1
0

(r
el

at
iv

e
er

ro
r

in
H

)

log10(h/L) log10(h/L)

⇠ O(h2) ⇠ O(h2)

global error 
global error 

lo
g
1
0

(r
el
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iv

e
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r
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I
)

Invariant HN Invariant IN 

Error in the quantities HN and IN at the exit of the nonlinear insert 
obtained when tracking a single 2.5 MeV proton across the insert 
with parameters τ = 0.45, c = 0.01 m1/2, µ0 = 0.3, and L = 2.0 m. 

single-particle Hamiltonian 
w/o space charge (“external”) 

2D space charge Green function 
in a rectangular conducting pipe 

Spectral approximation of G using Nl , Nm Fourier modes in x and y, respectively: 

G(ri, rj) = 4⇡
4

ab

1

Np

NlX

l=1

NpX

m=1

1

�2
lm

sin(↵lxj) sin(�myj) sin(↵lxi) sin(�myi)

for mode (l,m): 

As an example, we studied how undesired nonlinear effects 
in the arc (kinematic nonlinear effects and 2nd/3rd-order 
dipole effects) impact preservation of the invariants HN and 
IN in the IOTA ring.   

 
 

Application:  investigation of kinematic nonlinearities 
and 2nd/3rd-order dipole effects in the IOTA ring. 

9 

The corresponding value of σI /<I> (for the second invariant) grows by 1% over 8000 turns. 
 
Expected to be less problematic for a large ring such as the proposed Rapid Cycling Synchrotron. 

�
H

/h
H
i

[%
]

Diffusion of the H invariant (IMPACT-Z) 

 
 

Evolution of the first invariant with the inserts on  

27 

•  Tracking performed using a matched nonlinear KV distribution with ε0 = 3.9 mm-mrad. 

�
H

/h
H
i

[%
]

Slow relative growth in <H> ~ 0.15%. 

phase mixing 
first 50 turns 

Kinematic effects plateau at 0.2%.  

3rd order symplectic dipoles w/ exact drifts 
linear symplectic tracking w/ exact drifts 

linear symplectic tracking 

H =

NpX

j=1

Hext(rj ,pj) +
K

2

NpX

i=1

NpX

j=1

G(ri, rj)

↵l =
l⇡

a
, �m =

m⇡

b
, �2

lm = ↵2
l + �2

m

Benchmark:  Expansion of a zero-emittance uniform cylinder beam 

Benchmark:  A waterbag beam in the linear IOTA lattice (insert off) 

An initially matched waterbag 2.5 MeV p beam with 0.411 
mA and 8.0 mm-mrad (geometric) emittance is tracked in the 
linearized IOTA lattice for space charge tune depression 0.03.  

Simulation of a 2.5 MeV p beam with 4.113 mA current and 
initial radius 3.9 mm expanding in free space (a = b = 5 cm). 

 
 

Benchmark 1:  Expansion in free space of a cold uniform 
cylinder beam (III):  Hamiltonian preservation 

H =

NpX

i=1

p2
i

2
+ 4⇡

K

2

4

ab

1

Np

NpX

i=1

NpX

j=1

NlX

l=1

NmX

m=1

1

�2
lm

sin(↵lxj) sin(�myj) sin(↵lxi) sin(�myi)

Initial value of H : 

H/Np = 9.694248 ⇥ 10�7

�min/R0 = 0.1

R0/xaperture = 0.0781

Numerical resolution: 

Np = 1.024 M

⇠ O(hSC/L)2

The error  in H scales as expected: 

Evolution of the N-particle Hamiltonian 

R
el
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e 
ch
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 H

 ×
 1

06  

125 SC kicks 

250 SC kicks 

× 4.00 

500 SC kicks 

      
 
 ⇠ O(h/L)2

 
 

Benchmark 1:  Expansion in free space of a cold uniform 
cylinder beam (II). 

      
 
  
 

�x
�y

Xmax

Ymax

× 2.04 

× 2.03 

Beam size evolution 

      
 
  
 

�min/R0 = 0.4

�min/R0 = 0.2

�min/R0 = 0.1

Emittance evolution 

�min =
2xaperture

Nx
=

2yaperture

Ny

Measures of numerical resolution (nominal case): 

�min/R0 = 0.1

R0/xaperture = 0.0781

doubling 
distance 

hSC/L = 0.0591

(1.024M particles, 512x512 modes)  In free space, the N-particle Hamiltonian 
is an invariant of motion, which is numerically well-preserved. 

Final beam phase space 

2D symplectic 
spectral solver 

3D PIC Poisson  
solver 

 x = 0.001104 mod 2⇡

 y = 0.000927 mod 2⇡

 x = 0.001256 mod 2⇡

 y = 0.001067 mod 2⇡

phase advance in arc 

phase advance in arc 

2D symplectic spectral solver 

No visible secular emittance growth. 

(1.024M particles, 64x64 modes)  Using fully symplectic space charge 
tracking is expected to reduce spurious numerical emittance growth [8]. 

2 nonlinear inserts ON                2.5 MeV protons 
   L=1.8 m, τ=0.45,                      Matched “nonlinear KV” beam  
  c = 0.009 m1/2, µ0=0.3             ε0 = 3.9 mm-mrad, σδ = 0 

Re(z)

Im(z)

branch'cuts'

circle'of'
convergence'

1 -1 

1 

-1 

Domain of 
analyticity 

F =
Az + i 

B⇢

t̃ =
⌧c2

�
z =

x + iy

c
p
�

~B = r⇥ ~A = �r 

Physical quantities 

This representation is well-behaved and avoids a numerical 
instability associated with tracking using the form in [1]. 

Initially, σH ≈ 0.  Note the rapid initial jump followed by linear growth. 
The corresponding value of               grows by 1% over 8000 turns. 
Simulations using different values of ε0 suggest that                           .                            

�I/hIi
�H/hHi ⇠ p

✏0

Fig. 2. Error in the quantities HN and IN at the exit of the nonlinear insert, obtained when
tracking a single 2.5 MeV proton across the nonlinear insert with parameters τ = 0.45, c = 0.01

m1/2, µ0 = 0.3, and L = 2.0 m.

4. Implementation of a 2D Symplectic Spectral Space Charge

Solver

Recently, there has been increased interest in the community in the development

of algorithms for modeling collective self-field effects in plasmas and beams in a

manner that preserves the Hamiltonian or symplectic structure of the collective

multiparticle system.10,11 This may be especially important for avoiding numerical

artifacts during long-term tracking of intense beams in highly nonlinear systems

such as IOTA. We describe the implementation of one such algorithm11 within the

code IMPACT-Z for modeling 2D space charge in an unbunched, coasting beam

using a spectral method. For a system of Np macroparticles with phase space

coordinates (rj ,pj), (j = 1, . . . , Np), the collective Hamiltonian of the system is

expressed in the form:

H =

Np∑

j=1

Hext(rj ,pj) +
K

2

Np∑

i=1

Np∑

j=1

G(ri, rj), (13)

where Hext denotes the single-particle Hamiltonian including external fields,

K =
qI

2πε0p0v20γ
2
0

(14)

is the generalized perveance of the beam, and G is a Green function for the 2D

Poisson equation with an appropriate boundary condition. Using the boundary

condition for a rectangular conducting pipe (for simplicity), an approximation for

G is obtained by using a finite number of Fourier modes in x and y as:

G(ri, rj) = 4π
4

ab

1

Np

Nl∑

l=1

Nm∑

m=1

1

γ2lm
sin(αlxj) sin(βmyj) sin(αlxi) sin(βmyi) (15)

where

αl =
lπ

a
, βm =

mπ

b
, γ2lm = α2

l + β2
m. (16)
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Here Nl, Nm are the number of Fourier modes and a, b are the aperture sizes in x

and y, respectively.

At each longitudinal step, the splitting (7) may be applied to evaluate the map

on the collective Np−particle phase space. The mapMSC(h), corresponding to the

second term in (13), affects only the particle momenta and is given by pj → pf
j ,

(j = 1, . . . , Np) where:

pfx,i = px,i − hK
Np∑

j=1

∂G(ri, rj)

∂xi
, pfy,i = py,i − hK

Np∑

j=1

∂G(ri, rj)

∂yi
. (17)

Note that the momenta are normalized by the design momentum p0, and that (17)

is evaluated directly from the macroparticle coordinates in the laboratory frame.

By grouping terms appropriately, the computational complexity of this algorithm

scales as O(Nmode×Np), where Nmode = NlNm is the total number of modes. The

algorithm is easily parallelized by distributing particles uniformly among computa-

tional cores.11

Figure 3 shows the result of a simple benchmark performed within IMPACT-

Z. A coasting, uniform cylinder beam is initialized with zero momentum spread,

and allowed to expand under its own space charge over the distance required to

double in radius. For a coasting beam, the collective Hamiltonian (13) has no ex-

plicit dependence on the independent variable, and is therefore invariant under the

continuous-time evolution of the Np−particle system. Due to the use of numerical

integration, which makes use of the Hamiltonian splitting (7), this quantity is nu-

merically preserved within a global error that is second order in the stepsize h, as

expected.
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Advances in Symplectic Tracking for Robust Modeling of Nonlinear Integrable Optics

New numerical tools to improve modeling of nonlinear 
integrable optics in IOTA with intense space charge have been 
implemented in the code IMPACT-Z.  A complex treatment of 
the nonlinear insert is used as an alternative to [1] for tracking, 
avoiding a previously problematic instability.  This is performed 
using a second-order symplectic integrator based on Yoshida 
splitting.  Space charge can be treated using either a traditional 
grid-based Poisson solve or using a new spectral solver that is 
symplectic (by design) on the N-particle phase space of the 
macroparticle system [8].  Ongoing work will investigate how 
diffusion rates for the invariants of motion in IOTA are affected 
by choice of numerical parameters (number of macroparticles, 
number of grid cells or spectral modes, number of steps), and 
the use of additional Poisson solvers is under consideration.  
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Nonlinear Integrable Optics 
in IOTA (FNAL)

Goals:  Proof of principle demonstration of nonlinear integrable 
beam optics [1-3]--to achieve nonlinear tune shifts exceeding 0.25 
without degradation of dynamic aperture and to exploit the resulting 
nonlinear decoherence to suppress collective instabilities (halo) [4].  

Inside the nonlinear insert, tracking with space charge is 
performed using a second-order symplectic integrator 
(easily generalized to higher order) [7].  Twice apply the 
following splitting for a step of size h: 

Here K is the generalized perveance of the beam and a, b are 
the aperture size in x and y, respectively. 

Following [8], a particle-based 2D symplectic space charge 
solver with rectangular boundary conditions was implemented 
in IMPACT-Z.  The collective Hamiltonian for the N-particle 
system is given explicitly by: 

•  Dynamics inside the nonlinear magnetic insert: 

•  βx = βy , D = 0 across the nonlinear drift space 
•  nπ phase advance from nonlinear drift space 
       exit to nonlinear drift space entrance  
 

drift space for  
nonlinear insert 

Courant-Snyder transformation, scaling 

H? =
1

2
(P 2

x + P 2
y ) � ⌧c2

�(s)
U

 
X

c
p
�(s)

,
Y

c
p
�(s)

!

HN =
1

2
(P 2

xN + P 2
yN + X2
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N ) � ⌧U(XN , YN )

•  Dynamics in the arc external to the insert: 

{HN , IN} = 0

HN, IN are invariant under the one-turn map for the ring. 

. 

first invariant 

Complex Representation of the 
Nonlinear Integrable Potential

•  Nonlinearity: tune spread washes out  
      coherent space charge instabilities 
 
•  Integrability: ensures orbits are regular  
      and remain bounded (avoids chaos)  
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Integrable Optics at IOTA 
• Main goals for studies with a pencil electron beam:  

� Demonstrate a large tune spread of ~1 (with 4 lenses) without degradation of 
dynamic aperture ( minimum 0.25 ) 

� Quantify effects of a non-ideal lens and develop a practical lens (m- or e-lens) 

FNAL Concept: 2-m long 
nonlinear magnet 

SBIR Phase I and II:  
Radiabeam Technologies 

FMA, fractional tunes

Small amplitudes
(0.91, 0.59)

Large amplitudes

0.5 1.0

0.5

1.0

νx

νy

A single 2-m long nonlinear lens  
creates a tune spread of ~0.25 NA-PAC13: F. Shea et al., 

“Measurement of Nonlinear 
Insert Magnets” 

The vector potential is chosen to give a 2 d.o.f. Hamiltonian 
for on-energy particles within the insert of the form: 

D&N give in [1] a realizable potential U such that HN 
admits a second invariant IN :                          . 

Assumed linear with a map RN given by:  
corresponding to a thin axially-symmetric lens 
generating a phase advance nπ, for integer n.  

RN = ±I

Integrability + Maxwell’s equations require that the 2D 
magnetic vector potential       within the insert satisfies: 

Tests of a 2D Symplectic 
Spectral Space Charge Solver

(@2
x + @2

y)As = 0

xy(@2
x � @2

y)As + (y2 � x2 + 1)@x@yAs + 3y@xAs � 3x@yAs = 0

Modeling need:  Algorithms for robust and efficient  
symplectic long-term tracking with intense, high-resolution  
space charge in strongly nonlinear s-dependent B fields.  

(z2 � 1)
d2F

dz2
+ 3z

dF

dz
+ 2t̃ = 0

F (z) =

✓
t̃zp

1 � z2

◆
arcsin(z)

Application to the IOTA lattice

z = x + iy F = As + i 

Complex representation as a single ODE [5]: 

2D Laplace Eq. 

As

Bertrand-Darboux Eq. 

Solution: 

Symplectic Integrator & 
Implementation in IMPACT-Z

Domain of analyticity of the complex function F , which defines 
the vector potential of the nonlinear insert in the transverse plane.  
Curves in blue denote magnetic field lines.  The fields vary with 
longitudinal position s due to the dependence on β, which is the 
betatron amplitude across the drift space containing the insert. 

H = H1 + H2 M(h) = M1

✓
h

2

◆
M2(h)M1

✓
h

2

◆
+ O(h3)

Upper-level splitting (once per “space charge” step) 

Lower-level splitting (once per “map” substep) 

Hext = Hdrift + HNLL

H = Hext + HSC

(contribution due to nonlinear insert fields) 

(contribution due to space charge fields) 

p⇤ = �
dF

dz
p =

�px + i�py

p0

The map           is a momentum kick in the space charge 
charge fields computed via a Poisson solve, while   
is a momentum kick in the nonlinear insert fields using: 

MSC

MNLL

� =
h

c
p
�

Convergence of the two invariants of motion with step size h 
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Invariant HN Invariant IN 

Error in the quantities HN and IN at the exit of the nonlinear insert 
obtained when tracking a single 2.5 MeV proton across the insert 
with parameters τ = 0.45, c = 0.01 m1/2, µ0 = 0.3, and L = 2.0 m. 

single-particle Hamiltonian 
w/o space charge (“external”) 

2D space charge Green function 
in a rectangular conducting pipe 

Spectral approximation of G using Nl , Nm Fourier modes in x and y, respectively: 

G(ri, rj) = 4⇡
4

ab

1

Np

NlX

l=1

NpX

m=1

1

�2
lm

sin(↵lxj) sin(�myj) sin(↵lxi) sin(�myi)

for mode (l,m): 

As an example, we studied how undesired nonlinear effects 
in the arc (kinematic nonlinear effects and 2nd/3rd-order 
dipole effects) impact preservation of the invariants HN and 
IN in the IOTA ring.   

 
 

Application:  investigation of kinematic nonlinearities 
and 2nd/3rd-order dipole effects in the IOTA ring. 

9 

The corresponding value of σI /<I> (for the second invariant) grows by 1% over 8000 turns. 
 
Expected to be less problematic for a large ring such as the proposed Rapid Cycling Synchrotron. 

�
H

/h
H
i

[%
]

Diffusion of the H invariant (IMPACT-Z) 

 
 

Evolution of the first invariant with the inserts on  

27 

•  Tracking performed using a matched nonlinear KV distribution with ε0 = 3.9 mm-mrad. 

�
H

/h
H
i

[%
]

Slow relative growth in <H> ~ 0.15%. 

phase mixing 
first 50 turns 

Kinematic effects plateau at 0.2%.  

3rd order symplectic dipoles w/ exact drifts 
linear symplectic tracking w/ exact drifts 

linear symplectic tracking 

H =
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Hext(rj ,pj) +
K
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G(ri, rj)
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a
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b
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Benchmark:  Expansion of a zero-emittance uniform cylinder beam 

Benchmark:  A waterbag beam in the linear IOTA lattice (insert off) 

An initially matched waterbag 2.5 MeV p beam with 0.411 
mA and 8.0 mm-mrad (geometric) emittance is tracked in the 
linearized IOTA lattice for space charge tune depression 0.03.  

Simulation of a 2.5 MeV p beam with 4.113 mA current and 
initial radius 3.9 mm expanding in free space (a = b = 5 cm). 

 
 

Benchmark 1:  Expansion in free space of a cold uniform 
cylinder beam (III):  Hamiltonian preservation 
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Initial value of H : 

H/Np = 9.694248 ⇥ 10�7

�min/R0 = 0.1

R0/xaperture = 0.0781

Numerical resolution: 

Np = 1.024 M

⇠ O(hSC/L)2

The error  in H scales as expected: 

Evolution of the N-particle Hamiltonian 
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Benchmark 1:  Expansion in free space of a cold uniform 
cylinder beam (II). 

      
 
  
 

�x
�y
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× 2.04 

× 2.03 

Beam size evolution 

      
 
  
 

�min/R0 = 0.4

�min/R0 = 0.2

�min/R0 = 0.1

Emittance evolution 

�min =
2xaperture

Nx
=

2yaperture

Ny

Measures of numerical resolution (nominal case): 

�min/R0 = 0.1

R0/xaperture = 0.0781

doubling 
distance 

hSC/L = 0.0591

(1.024M particles, 512x512 modes)  In free space, the N-particle Hamiltonian 
is an invariant of motion, which is numerically well-preserved. 

Final beam phase space 

2D symplectic 
spectral solver 

3D PIC Poisson  
solver 

 x = 0.001104 mod 2⇡

 y = 0.000927 mod 2⇡

 x = 0.001256 mod 2⇡

 y = 0.001067 mod 2⇡

phase advance in arc 

phase advance in arc 

2D symplectic spectral solver 

No visible secular emittance growth. 

(1.024M particles, 64x64 modes)  Using fully symplectic space charge 
tracking is expected to reduce spurious numerical emittance growth [8]. 

2 nonlinear inserts ON                2.5 MeV protons 
   L=1.8 m, τ=0.45,                      Matched “nonlinear KV” beam  
  c = 0.009 m1/2, µ0=0.3             ε0 = 3.9 mm-mrad, σδ = 0 

Re(z)

Im(z)

branch'cuts'

circle'of'
convergence'

1 -1 

1 

-1 

Domain of 
analyticity 

F =
Az + i 

B⇢

t̃ =
⌧c2

�
z =

x + iy

c
p
�

~B = r⇥ ~A = �r 

Physical quantities 

This representation is well-behaved and avoids a numerical 
instability associated with tracking using the form in [1]. 

Initially, σH ≈ 0.  Note the rapid initial jump followed by linear growth. 
The corresponding value of               grows by 1% over 8000 turns. 
Simulations using different values of ε0 suggest that                           .                            

�I/hIi
�H/hHi ⇠ p

✏0

Fig. 3. Simulation of a 2.5 MeV proton beam with 4.113 mA current and initial radius 3.9 mm

expanding in free space (a = b = 5 cm) using Np = 1.024 M. (a) Evolution of rms and total beam
sizes. (b) The collective Hamiltonian given by (13,15). Note that L ≈ 7.4 m.
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5. Applications to IOTA modeling

As one application of these tools, we studied how non-ideal nonlinear effects in the

arc, such as kinematic nonlinear effects and 2nd/3rd-order dipole effects, affect the

preservation of the invariants HN and IN in the IOTA ring. A matched particle

distribution representing a 2.5 MeV proton beam was initialized at the entrance

to the nonlinear magnetic insert in the normalized coordinates (XN , PxN , YN , PyN )

according to the distribution function:4

f ∼ δ(HN − ε0). (18)

Here HN is given in (5) and ε0 denotes a generalized emittance characterizing the

size of the beam in the 4D phase space. (It is convenient to normalize HN by

the quantity c2, so that ε0 has units of emittance. Here ε0 = 4 mm-mrad.) The

beam is given zero energy spread. Figure 4 illustrates the evolution of σHN
/〈HN 〉,

evaluated at the midpoint of the nonlinear insert, over 8000 turns in the absence of

space charge. When linear symplectic tracking is used within the lattice elements

external to the nonlinear magnetic insert (blue), this quantity remains nearly zero,

indicating the HN is well-preserved, as expected from the theory of Section 2 and

the linear optics of the IOTA lattice design. The green curve is obtained by using

linear tracking within lattice elements (bends and quads) external to the nonlinear

magnetic insert, except for the drift elements, which are treated exactly using the

leftmost Hamiltonian following (9). Due to kinematic nonlinearities within the drift

Hamiltonian, the invariants are no longer exactly preserved, although the degree of

violation is quite small. The red curve is obtained after including 2nd and 3rd-order

nonlinear effects within the dipoles, which are treated using symplectic Lie-algebraic

map techniques.12 The linear growth evident after turn 1000 suggests the presence

of stochastic diffusion due to the breakup of invariant tori. Fig. 4(b) illustrates the

scaling of this effect with the initial value of the generalized beam emittance ε0. As

expected, the effect becomes stronger as the initial beam emittance is increased, as

the beam samples a larger region of the phase space affected by these nonlinearities.

As a second application, we studied the effect of weak space charge on the preser-

vation of the invariants HN and IN using a version of the IOTA lattice designed

for a current of 0.411 mA (a space charge tune shift of ∆Q = 0.03). The lattice

quadrupole settings were retuned13 to restore nearly integer tune advance across

the arc. Space charge is treated throughout the ring using the symplectic spectral

space charge algorithm described in Section 4. For propagation in the external

fields we use linear tracking for all elements external to the nonlinear magnetic in-

sert (the “arc”) to isolate the effect of space charge on the integrability of motion.

The particle distribution is initialized according to the waterbag-like distribution

function:

f ∼ Θ(HN − ε0), Θ(x) =

{
1, x ≤ 0

0, x > 0
. (19)
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Scaling of kinematic and dipole nonlinear effects with 
initial beam emittance (σH evaluated at turn 2,000) 
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Evolution of the first invariant with the inserts on  

27 

•  Tracking performed using a matched nonlinear KV distribution with ε0 = 3.9 mm-mrad. 
�

H
/
hH

i
[%

]

Slow relative growth in <H> ~ 0.15%. 

phase mixing 
first 50 turns 

Kinematic effects plateau at 0.2%.  

3rd order symplectic dipoles w/ exact drifts 
linear symplectic tracking w/ exact drifts 

linear symplectic tracking 

�H ⇡ A✏
3/2
0

Fig. 4. (a) Diffusion of the first invariant of motion produced by kinematic nonlinearities and
2nd-3rd order dipole effects. Initially, σH ≈ 0. Note the rapid initial jump followed by linear

growth. The corresponding value of σI/〈I〉 grows by 1% over 8000 turns. (b) Simulations using

several values of ε0 suggest that σH/〈H〉 ∼
√
ε0.

Figure 5 illustrates the relative growth in the spread of the two invariants within

the beam as a function of turn number. Here, we use
√
IN rather than IN for

practical reasons related to numerical benchmarking. In Figs. 5(a) and (b), we see

behavior qualitatively similar to Fig. 4(a). This suggests that space charge may

induce stochastic diffusion due to the breakup of invariant tori, but before draw-

ing this conclusion it is important to understand the contributions of macroparticle

noise and other numerical effects in detail. Other studies exploring the interplay be-

tween space charge, numerical noise, and integrability in IOTA have been described

elsewhere.14

 
 

Example:  Space charge-induced evolution of invariants 
provides evidence of weak chaotic diffusion (I). 

30 

•  Evolution of the rms spread in the first  
     invariant H over 1K turns 
•  IOTA lattice retuned for space charge  
     tune depression of ΔQ = 0.03 

128x128 grid, 1.024 M particles 
open boundary condition, 2D PIC 

   Matched nonlinear waterbag beam 
   I = 0.411 mA, ε0 = 8.0 mm-mrad 
   t = 0.4, c = 0.01, µ0 = 0.30345, L = 1.8 m 

128x128 grid, 1.024 M particles 
open boundary condition, 2D PIC 
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Fig. 5. Illustration of space-charge induced diffusion of the two invariants of motion for ∆Q =
0.03. (a) Diffusion of the first invariant of motion produced by space charge. Note the rapid
initial jump in σH followed by slow linear growth. (b) Diffusion of the second invariant of motion
produced by space charge.
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6. Conclusions

A variety of new numerical tools have been implemented in the code IMPACT-Z

to facilitate the modeling of nonlinear integrable optics in IOTA with space charge.

A treatment of the nonlinear integrable potential of the IOTA magnetic insert in

the complex plane is used as an alternative to1 for numerical tracking, avoiding a

previously problematic numerical instability. This is performed using a second-order

symplectic integrator based on Yoshida splitting. Space charge can be treated using

either a traditional grid-based Poisson solve (with a variety of possible boundary

conditions) or using a new spectral solver that is symplectic (by design) on the

N -particle phase space of the macroparticle system.11 Simulations indicate slow

diffusion of the invariants of motion in the presence of dipole nonlinearities or space

charge. Future work will investigate in more detail the sensitivity of diffusion rates

for the invariants of motion in IOTA to numerical artifacts that may be affected by

the choice of Poisson solver and parameters such as the number of macroparticles,

number of grid cells or spectral modes, and number of time steps.
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